Estimating exposure from Census Populations

(updated 30 Apr 18 in response to a correction from Iván Williams. Thanks, Iván.)
We want to estimate exposure over three calendar years (census year-1, census year, census year +1) from a census population.

Define
$A=$ the lower bound of an age group (e.g., $A=80$)
$\mathrm{h}=$ the width of an age group (e.g., $\mathrm{h}=1$)
$t=$ time measured from the beginning of (census year-1) (e.g. if we're using 2010 census data then $t=0$ corresponds to 1 Jan 2009, and $t=3$ to 1 Jan 2012).
$C=$ the date of the census, measured on the t-scale (e.g., the 2010 Census was on 1 Aug 2010, so $\mathrm{C}=1.58$)
$x=$ the exact age of an individual on the census date (e.g., $x=79.3$)
Someone who was exactly x years old on the census date C was age $x-(C-t)$ at time t, would have had their $A^{\text {th }}$ birthday at time $\mathrm{t}_{\mathrm{A}}(\mathrm{x})=\mathrm{C}-(\mathrm{x}-\mathrm{A})$, and would be in the $[\mathrm{A}, \mathrm{A}+\mathrm{h})$ age group between times $\mathrm{t}_{\mathrm{A}}(\mathrm{x})$ and $\mathrm{t}_{\mathrm{A}}(\mathrm{x})+\mathrm{h}$.

Given any reasonable approximation to the life table survival function $p(x)$ we can estimate the number of person-years lived in $[\mathrm{A}, \mathrm{A}+\mathrm{h})$ over times $[0,3)$, per person x years old on the census date, as

$$
P Y_{A}(x)=\frac{1}{p(x)} \int_{0}^{3} I(t \geq C-(x-A)) \cdot I(t<C-(x-A)+h) \cdot p(x-(C-t)) d t
$$

where I() is a (0,1) indicator function for the expression in parentheses. We approximate the integral as a sum over a grid of 60 times $\mathrm{t}_{\mathrm{i}}=.025, .075, \ldots, 2.975$ as

$$
P Y_{A}(x) \approx \frac{1}{20} \frac{1}{p(x)} \sum_{i} I\left(t_{i} \geq C-(x-A)\right) \cdot I\left(t_{i}<C-(x-A)+h\right) \cdot p\left(x-\left(C-t_{i}\right)\right)
$$

The last step in the approximation is to assume that those counted at integer age X in the census are uniformly distributed over 5 exact ages $\mathrm{x}=\mathrm{X}+.10, \mathrm{X}+.30, \ldots, \mathrm{X}+.90$, so that per integer- X -year-old recorded in the census there were

$$
P Y_{A X} \approx \frac{1}{5}\left[P Y_{A}(X+.1)+P Y_{A}(X+.3)+\cdots+P Y_{A}(X+.9)\right]
$$

person-years of exposure at ages $[A, A+h)$ over times $[0,3)$.

An example

Using the same average male mortality rates in the HMD that we used for our TOPALS standard, each 55-year old male observed in the 2010 Census (on 1 Aug 2010, t=1.58) represent an average of
0.18 person-years of exposure at ages $[53,54)$ over 2009-2011
0.93 person-years of exposure at ages $[54,55$) over 2009-2011
1.00 person-years of exposure at ages $[55,56)$ over 2009-2011
0.81 person-years of exposure at ages $[56,57$) over 2009-2011
0.08 person-years of exposure at ages $[57,58$) over 2009-2011

Similarly, a 90-year-old male observed in the 2010 Census represents an average of
0.24 person-years of exposure at ages $[88,89$) over 2009-2011
1.14 person-years of exposure at ages $[89,90)$ over 2009-2011
1.00 person-years of exposure at ages $[90,91$) over 2009-2011
0.66 person-years of exposure at ages $[91,92$) over 2009-2011
0.06 person-years of exposure at ages $[92,93$) over 2009-2011

Exposure for $\mathrm{x}=55.5$ on 1 Aug 2010

The figure below illustrates exposure calculations for a male exactly 55.5 years old on the 2010 census date.

